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\ ABSTRACT

The theory of binary coherent systems is generalized for
multi-state components. The system stgte is defined to be the
state of the “horst“Lcomponent n theAibest min path, or %
equivalently, the state of the "best" component in the Mworst
min cut. All of the results for the binary case can be com-
puted for multi-state systems using the binary structure and
reliability function concepts. Monotonicity results are now

valid with respect to stochastic ordering of component proba-

bility vectors. |
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COHERENT SYSTEMS WITH MULTI-STATE COMPONENTS

by

R. E. Barlow

1. INTRODUCTION

The theory of binary coherent structures has served as a unifying
foundation for a mathematical theory of reliability [1]. Various generali-
zations to multi-state coherent structures have been suggested ([2],[3],[4]).
However, these generalizations have not been fruitful except for very special
applications. We define a system state function for coherent systems with
multi-state components and investigate its properties. Many results for the
binary case have natural extensions in terms of this system state function.
These results also have applications in fault tr.e analysis.

Suppose that we have a system with components C = {1,2, ..., n} . Fur-
thermore, suppose that each component can be in one of m + 1 states,
{0,2,2, ..., m} , where O 1is the failed state and m is the maximal or
"perfect" state. In addition, we have given sets of components called min

P
path sets {Pl’Pz’ suay PP} where C= U P_ . No min path is properly
r=1

contained in any other min path set. The components, C , together with the
min path sets define a coherent system. The system structure determines the
min path sets. Intuitively, if all components in at least one min path set
are "functioning'", then the system is "functioning'. This is the set theo-

retic definition of a coherent system [cf. [5]]. The min path sets determine

a blocking collection of sets called the min cut sets {Kl,Kz, s 5% Kk} &
k

Each min cut set meets each min path set and C = U Ks . Also, no min cut
s=1

set is properly contained in any other min cut set. Intuitively, if all com-
ponents in at least one min cut set are '"mot functioning', then the system

is "not functioning'. Either the min path sets or the min cut sets uniquely

ol tanT L.
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determine our coherent system.

Let z, = j if component i is in state j (0 < j < m) so that
z = (21’22’ ey zn) is the component state vector. The specification and
determination of component states will in general depend on engineering and

system considerations which we will not discuss here. Let capital Zi be

a random variable and let P(Zi = j) = > 0 where =1 . Since

h
P P
i3 iy Ty

pij could be 0 for some states, it is not necessary that every component
be capable of assuming every state. In general, component states will be
qualitative measures as are the concepts 'failed" and "functioning'". In
much of what follows, it is not necessary to confine component states to
integer values {0,1,2, ..., m} . Zi could, for example, take values in
[0,1] or even negative values. However, we do not pursue this generaliza-

tion here.

The performance level of a system, given the component state vector

z = (zl,zz, ey zn) , will be system dependent and it is unlikely that any

one mathematical definition of system performance will be preferred above all
others. Hence, we concentrate on a fundamental, but necessarily limited
measure of system performance. If the coherent system is a series system,
then we assign to the system the state of its "worst' component; i.e. if ¢

is the system state function, then ¢(z) = Min 2z, . Intuitively, a series
1<i<n

system is no better than its worst component. If the coherent system is a
parallel system, then we assign to the system the state of its 'best" com-

ponents; i.e. ¢(z) = Max 2z, . We will make use of the following well
1<i<n

known

1.1 Proposition:

For a coherent system with min path sets {Pl,Pz, ooy Pp) and min

cut sets {Kl’KZ’ v ooy Kk} and any real valued function fi s

— — et e e — -




Max Min fi = Min Max fi H
l<r<p iePr 1<s<k isKs

[See [1], p. 12 and 15.]

1.1 Definition:

For a coherent system with min path sets {Pl’PZ’ 5 Pp} and min cut

sets {KI’KZ’ e 0y Kk} the system state function is

(1.1) ¢(z) = Max Min Z, = Min Max z
1<r<p iePr l<s<k ieKs

i
Note that z(z) is coordinate-wise nondecreasing. Intuitively, z(z) is
the state of the "worst" component in the "best" min path set or, equiva-
lently, the state of the "best'" component in the "worst'" min cut set.

With this definition of system state, most of the results for binary
coherent systems have a natural generalization. For example, suppose that
tij is the first time that component i reaches state j starting in

state m , then the time until the system first reaches state j starting

in state m, 1, , is easily seen to be

3

(1.2) 17, = Max Min t, ,£ = Min Max t

I 1o e, Y gceck sk 1

The result that redundancy at the component level is better than re-
dundancy at the system level, [Theorem 2.4, p. 8 [1]], also has a natural
generalization. Let z = (zl,zz, sy zn) and w = (wl,wz, STy wn) be
component state vectors for components {1,2, ..., n} and {11,21, PP al}

respectively. Components i and il may be identical but operate inde-

pendently of each other.

Define zVws= (z1 Vwizy Vwy, coey 2 V wn)




where zg v W, = max (zi,wi) . Then
(1.3) z(z Vw >c(2) Viw .

This is an immediate consequence of the coordinatwise nondecreasing property

of ¢ . [Definition 1.1.]




2. STOCHASTIC PROPERTIES OF THE SYSTEM STATE FUNCTION

" Let
’1 if component i is in state j
X =

H lO otherwise.

m
Clearly Z xij =1 . Let ¢ be the usual coherent structure function as-
=0 t

x )=1

sociated with min path sets {Pl’PZ’ eiary Pp} . Then ¢(xlm’x2m’ cees X0

if and only if at least one min path set has all of its components in state m .
Also ¢(xlm’x2m’ ey xnm) = 0 if and only if at least one min cut set has no
components in state m . Thus ¢ is the coherent structure function which
recognizes only two states: the state m (or perfect state) and the nonper-

fect set of states less than m .
m
Let iy = ij X and zj = (ylj,yzj, <eiss ynj) . Clearly 3 3_Xj+1

coordinatewise, so that
¢(1j) = ¢(1j+1) >0 .

Also ¢(zj) =1 if and only if there is at least one min path all of whose

components are in state j or greater. Hence <¢(z) > j if and only if

¢(zj) =1 . It follows that

1 if t(2) =)
€2.1) ¢(xj) - ¢(zj+1) =

0 otherwise.

This observation will be helpful for computing P(g(Z) = j) since

PGE@ = 1) = PIoL,) = #Q,,,) = 1]

(2.2)

= E¢(Y,) - Eo(Y, ,)

Al j+1

In the following we assume that all components are statistically independent.

m e i M ol et b v PP TSP PTE T — — - S— -




|
|
é
B
J

T T R R T T TN TR T

T

E
:
E
i

6
We have proved the following
2.1 Theorem: -
m :
Let P(Xij =1) = pij and qij = rzj Piy - For a coherent system with ;

structure function ¢ and reliability function

h(Rm) = E¢(xlm9xzm’ ceesy X )

nm 3

we have 4
PG = 1) = h(_qj) h(gj+1) 0<j<m-1

(2.3)
P(z(2) =m) = h(_qm) B

(2.4) P(z(2) > j) = h(g_j) 0<iz<m,

Whel"e ﬂj = (qu’qzj’ SLSEAES) qnj)

Example:

Consider the following two terminal network representation for a three
component coherent system. Assume components can be in any one of three

states: 0 for failed, 1 for marginal and 2 for perfect. The usual

{ )
S
3
SN s
1
—O0—
2

FIGURE 2.1. Two Terminal Network.

reliability function is

h(Ry) = P1aPay I p3p)




where Py, Il P3p = Poy + P3y = PyyP3y - Let a7 = Pyq =+ Pio and 450 = Pyo
for i <i <3 . Then

P(system is marginal) = P(¢ = 1)

h(_ql) - h(_q_z)
= 43;(ap; 1 d3p) - 95,005, 1 43)) -

b Notation:

It will be convenient to let p = (pij) be the probability matrix cor-

responding to component state matrix x = (xij) . Let
i ! (2.5) hj(g) = h(gj) h(gj+1) sl s m =1
and hm(g) = h(gm)

be the probability that the coherent system is in state j and let h(p) =
(ho(g),hl(g), SOy hm(g)) . The usual monotonicity prouperties of binary co-
herent systems have analogous monotonicity properties with respect to stochastic

ordering. Let o = (ao,al, Sfoey am) be a probability vector; i.e. O < . <1

1
and G S IS
§ g

Definition:

m | S
z a, < ) «a for 0<j<mj;
r=j J T pmy T

. *
i.e. o 1is stochastically less than o




Definition:

o

P iff

* * *
(PiorPyg» «=+» Pyp) = (1’10’1’11’ *aen pim)

for i <i <n . Intuitively, the better the components, the better the

system state. More precisely, we have

2.2 Proposition:

*

If p < p , then
=
(2.6) LU )
st
Proof:

m m
To show ) h (p) < ] h (p*) we need only verify that h(g,) < h(g*)
r=j r = r'—'j r\= j ]

* i R *
by Theorem 2.1 (2.4). Since p < p implies q,, = 2 P < Z Pi. = q
= ;E -~ ij r=j ir — yad ir ij

and h is coordinatewise nondecreasing, the result is obvious.!]

Generalization of the Moore-Shannon Theorem

Moore and Shannon showed that binary coherent reliability functions are
S-shaped in the sense that if all components work with probability p , either
h(p) 2 p or h(p) <p for all p, or there exists p, such that h(p) < p
for p < Po while h(p) > p for p > Py - [Cf. Theorem 5.4 [1].] This re-
sult, comparing an arbitrary binary coherent system reliability with a single
component reliability, has a natural generalization with respect to stochastic

ordering.




2.3 Proposition:

Let (pio’Pil’ e pim) = (ao,al, e am) = o . Assume h(po) = p,
(0 < Py < 1) 1is the fixed point for the corresponding binary coherent re-

*
liability function. Let a = (1 - pO,O, S O,po) . Then

(@) & < o implies h(a) < o, while
st st 1
: 1
(®) @ > o implies h(2) > o '
st st

where o is the probability matrix with identical rows, a .

Proof:

To show (a) we need only verify

nle?) -

I o~—g

m
h (@) < ]
r=

r=j ] i
3
m m m m
But Z hr(g) = h(gj) = h( z ar> and Z a < 2 a =Py for 1 <j<m
r=j r=j r=j r=j
m m
by assumption. By the Moore-Shannon Theorem, h( 2 ar) < z a. for
r=j r=j

0 <j <m which in turn implies h(g) < a.
st

(b) is proved‘similarly.ll

Proposition 2.3 allows us to compare arbitrary coherent systems (with
identical components) to a one component system with the same probability

vector. Of course, if no po(O S Py © 1) such that h(po) = Py exists,

then either h(a) < o or h(g) > a for all a.
st st
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A Geometric Property of the System State Distribution

A fundamental result in coherent structure theory is that the distribu-
tion of time to first system failure is IFRA (for increasing failure rate
average) if component life distributions have the same property. The same
kind of result carries over to the system state distribution.

Suppose states {j,j + 1, ..., m} are the "good" states and the distri-
bution of time for a component to leave the good states starting in state m
is IFRA; i.e. {P[Zi(t) > j]}l/t is nonincreasing in t >0 for fixed j

Then

Pre(e) > e

is also nonincreasing in t > 0 for fixed j . This is the so-called IFRA
closure theorem [Cf. Theorem 2.6, [1]]. The following is a corollary to the

IFRA closure theorem.

2.4 Proposition:

If {P[Zi(t) :.j}l/j is nonincreasing in j > 0 for fixed t , then

{Plz(t) > j]}l/j

is also nonincreasing in j > 0 for fixed ¢t .

Proof:

Flzey 2 1] = h[gj(t)] where

ag4(6) = Plz(e) 2 5] .

m

Define Fi(j) = Z pir(t) and elsewhere by constructing the linear inter-
r=j

polate to the points (j,-log ?i(j)) 3% Rl seey B s Then [fi(x)ll/x

is nonincreasing in x > 0 . By the IFRA closure theorem
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= = = o111/
(IhIF, (), F,(3), -.es F (DD

= Thlay; ()05, (0)s «eey a5 (013

is nonincreasing in j > 0 .

Measures of Component Importance

Various measures of component importance have been suggested for com-

ponents in a binary coherent system [6], [7]. These have a natural general
ization to multi-state systems. For example, we say that component i is
"critical" to a coherent system at state j , if, with component i in state
j , the system is in state j and with component i not in state j , the
system is not in state j . Let Iij(g) be the probability of this event.
We call Iij(g) the probability importance of component i with respect to

system state j .

To compute Iij(p) , let

(11j’xj) ¥ (yio,yil. ) Yi,j_l,l,yi’jﬂ, ceey yim) .

Then

if and only if component i 1is critical to system states {j,j+l, ..., m}
in the sense that if component i 1is in state j , then the system is in
one of the states {j,j + 1, ..., m} and if component i is not in state
j , the system is not in one of the states {j,j + 1, ..., m} . Hence com-

ponent 1 1is critical to system j if and only if

[¢(lij,xj) - ¢(oij’xj)] il [¢(li,j+1’lj+1] i °(oi,j+1’xj+l)] = ]

for j=1,2, ..., m= 1. Hence

L 1 d i
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(2.7)
- [h(lij ,ﬂj) = h(oij’ij)] - [h(li,j"'l’gj'i'l) 5 h(oi,j+1’3j+1)]

for j=1,2, ..., m-1. It is easy to verify that

L@ = E[6(1; X)) - ¢(0

Y]

im’

and

{p) -

Note that for the case m =1 , Iio(g) = Iim P

Finally, the probability that component i is in state j and component

i dis critical for system state j is pijlij(g) 5

First Passage Distribution to State j

We now assume tha* components can ''degrade" through successively lower

states until, fiually, total failure coincides with passage to state 0 ; i.e.
o] L, 2 1 *0 ;

If state transition times are independent and exponentially distributed, this
is called a "pure death process'". 1In this section we do not allow transitions

to higher states. Let Fij be the (continuous) distribution of time until

component i first reaches state j , starting in state m and ii

j(t) e

1- Fij(t) . Let ¢¢(t) be the state of the system at time t , then

P{z(s) > 3350 < s <t} = h'[f‘lj(t:),izj(t), s¥np T-‘nj(t)]

by (2.4) of Theorem 2.1.

We can also compute the probability that component i causes the system
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to enter state j , in the sense that the system state changes from state
j+ 1 to state j simultaneously with a similar state transition by com—
ponent i . If component first passage distributions to state j are con-
tinuous, as we assume, then at most one component can be responsible for the

system changing state.

2.5 Proposition:

If first passage distributions of time to go from state m to state j
O<j<m-1), Fij(t) , are continuous, then the probability that component

i causes the system to pass to state j by time t is

t
f {[h(1;4,F5 (W) - hlog s, F ()]
0

= [0y g Ep () - hoy 4guFopy (@)IHF,, ()

where _'F_j(u) = ('ﬁlj(u),'ﬁzj(u), disay Fnj(u)) .
Proof:
By (2.7)
[h(lij.zj () - h(oij .Ej ()]

is the probability that component i is critical to system state j + 1

at time u in the sense that if component i 1is in state j + 1 at time
u , the system is in state j + 1 at time u . Otherwise the system is not
in state j + 1 at time u . If we multiply this by the probability,

(u) , that component 1 enters state j in the interval (u,u + du) ,

dFiJ |
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and integrate we have the required probability. Note that if component i
is in state j + 1 and critical to system state j + 1 at time u , then
it is a "worst" component in a "best" min path. Hence if component i then
leaves state j + 1 for state j , so does the system since component i

was critical. ||
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